Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses.

نویسندگان

  • Jonas Rubenson
  • Denham B Heliams
  • Shane K Maloney
  • Philip C Withers
  • David G Lloyd
  • Paul A Fournier
چکیده

The alleged high net energy cost of running and low net energy cost of walking in humans have played an important role in the interpretation of the evolution of human bipedalism and the biomechanical determinants of the metabolic cost of locomotion. This study re-explores how the net metabolic energy cost of running and walking (J kg(-1) m(-1)) in humans compares to that of animals of similar mass using new allometric analyses of previously published data. Firstly, this study shows that the use of the slope of the regression between the rate of energy expenditure and speed to calculate the net energy cost of locomotion overestimates the net cost of human running. Also, the net energy cost of human running is only 17% higher than that predicted based on their mass. This value is not exceptional given that over a quarter of the previously examined mammals and birds have a net energy cost of running that is 17% or more above their allometrically predicted value. Using a new allometric equation for the net energy cost of walking, this study also shows that human walking is 20% less expensive than predicted for their mass. Of the animals used to generate this equation, 25% have a relatively lower net cost of walking compared with their allometrically predicted value. This new walking allometric analysis also indicates that the scaling of the net energy cost of locomotion with body mass is gait dependent. In conclusion, the net costs of running and walking in humans are moderately different from those predicted from allometry and are not remarkable for an animal of its size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves

In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2007